Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 467: 133723, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38359761

RESUMO

Small microplastics (SMPs < 100 µm) can easily be transported over long distances far from their sources through the atmospheric pathways and reach even remote regions, including the Arctic. However, these sizes of MPs are mostly overlooked due to different analytical challenges; besides, their pathways through atmospheric depositions, such as snow depositions, are mostly unknown. The spatial variability in bulk snow samples was investigated for the first time in distinct sites (e.g., glaciers) near Ny Ålesund, the world-known northernmost permanent research settlement in the Svalbard Islands, to better comprehend the presence of SMP pollution in snow. Seasonal snow deposited over the tundra and the summits of different glaciers were also sampled. A sampling procedure was designed to obtain representative samples while minimizing plastic contamination, thanks to rigorous quality assurance and quality control protocol. SMPs' weight (µg SMP L-1) and deposition load (mg SMPs m-2) result from being lower in the remote glaciers, where they may be subject to long-range transport. The SMPs' minimum length was 20 µm, with the majority less than 100 µm. Regarding their size distribution, there was an increase in the size length deriving from the local input of the human presence near the scientific settlement. The presence of some polymers might be site-specific in relation to the pathways that affect their distribution at the sites studied. Also, from the snow surface layer collected at the same sites to evaluate the variability of SMPs during specific atmospheric deposition events, the results confirmed their higher weight and load in surface snow near the scientific settlement compared to the glaciers. The results will enhance the limited knowledge of the SMPs in polar atmospheric compartments and deposition processes.

2.
Toxics ; 11(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37999588

RESUMO

Road dust is one of the environment's most important microplastic and plastic additive sources. Traffic vehicles and the wear of tires can release these emerging contaminants, which can be resuspended in the air and washed off by stormwater runoff. In this study, a concurrent quantification and chemical characterization of additives, plasticizers, natural and non-plastic synthetic fibers (APFs), and small microplastics (SMPs, <100 µm) in samples of highway road dust (HWRD) was performed. The sampling procedure was optimized, as well as pretreatment (extraction, purification, and filtration) and analysis via micro-FTIR. The average length of the SMPs was 88 µm, while the average width was 50 µm. The highest abundance of SMPs was detected in HWRD 7 (802 ± 39 SMPs/g). Among the polymers characterized and quantified, vinyl ester and polytetrafluoroethylene were predominant. APFs' average particle length was 80 µm and their width was 45 µm, confirming that both of these emerging pollutants are less than 100 µm in size. Their maximum concentration was in RD7, with 1044 ± 45 APFs/g. Lubricants and plasticizers are the two most abundant categories, followed by vulcanizing agents, accelerators, and pre-vulcanizing retarders derived mainly from tires. A potential relationship between APFs and SMPs in the different seasons was observed, as their concentration was lower in summer for both and higher in winter 2022. These results will be significant in investigating the load of these pollutants from highways, which is urgently necessary for more accurate inclusion in emission inventories, receptor modeling, and health protection programs by policymakers, especially in air and water pollution policies, to prevent risks to human health.

3.
Environ Sci Pollut Res Int ; 30(49): 107878-107886, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37740162

RESUMO

The study about how tyre-derived particles can potentially worsen the water quality and how traffic pollution markers can affect the environment is crucial for environmental management. Road emissions are known to contribute to pollution in various environments, and benzothiazoles and their derivates can be used to trace pollutant inputs related to surface runoff in the aquatic system. A total of eight benzothiazoles were determined in highway stormwater runoff and road dust collected from February to August 2022 near Venice (Casale sul Sile, Veneto Region, Italy). A new analytical method was validated, by using an UHPLC system coupled to a mass spectrometer (triple quadrupole). The target compounds were determined in both dissolved phase and suspended particulate matter of runoff, and the road dust samples were divided into seven fractions depending on particle diameters to understand the fraction partitioning. The results indicate that 2-SO3H-BTH was the most concentrated benzothiazole in all the analysed substrates, suggesting tyre debris as the main source because it is usually used in the vulcanization process. 2-SO3H-BTH reached a mean concentration of 115 ± 59 µg L-1, 4 ± 3 µg L-1, and 411 ± 441 µg Kg-1 for dissolved phase, suspended particulate matter, and road dust, respectively, while 2-OH-BTH and BTH showed values about an order of magnitude lower. The size distribution of most BTHs suggests that they are distributed in the finest fraction of road dust. An exception was given by 2-SCNMeS-BTH being present only in particles with a diameter > 1 mm.


Assuntos
Poeira , Monitoramento Ambiental , Monitoramento Ambiental/métodos , Benzotiazóis , Material Particulado , Qualidade da Água
4.
Environ Pollut ; 326: 121511, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36967009

RESUMO

Tire wear particles (TWPs) are one of the environment's most important emission sources of microplastics. In this work, chemical identification of these particles was carried out in highway stormwater runoff through cross-validation techniques for the first time. Optimization of a pre-treatment method (i.e., extraction and purification) was provided to extract TWPs, avoiding their degradation and denaturation, to prevent getting low recognizable identification and consequently underestimates in the quantification. Specific markers were used for TWPs identification comparing real stormwater samples and reference materials via FTIR-ATR, Micro-FTIR, and Pyrolysis-gas-chromatography-mass spectrometry (Pyr-GC/MS). Quantification of TWPs was carried out via Micro-FTIR (microscopic counting); the abundance ranged from 220,371 ± 651 TWPs/L to 358,915 ± 831 TWPs/L, while the higher mass was 39,6 ± 9 mg TWPs/L and the lowest 31,0 ± 8 mg TWPs/L. Most of the TWPs analyzed were less than 100 µm in size. The sizes were also confirmed using a scanning electron microscope (SEM), including the presence of potential nano TWPs in the samples. Elemental analysis via SEM supported that a complex mixture of heterogeneous composition characterizes these particles by agglomerating organic and inorganic particles that could derive from brake and road wear, road pavement, road dust, asphalts, and construction road work. Due to the analytical lack of knowledge about TWPs chemical identification and quantification in scientific literature, this study significantly contributes to providing a novel pre-treatment and analytical methodology for these emerging contaminants in highway stormwater runoff. The results of this study highlight the uttermost necessity to employ cross-validation techniques, i.e., FTIR-ATR, Micro-FTIR, Pyr-GC/MS, and SEM for the TWPs identification and quantification in the real environmental samples.


Assuntos
Monitoramento Ambiental , Plásticos , Monitoramento Ambiental/métodos , Pirólise , Espectroscopia de Infravermelho com Transformada de Fourier , Poeira/análise
5.
Environ Pollut ; 318: 120889, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36539009

RESUMO

The atmosphere is a significant pathway for distributing plastic particles and other micro-litter particles from their sources to other environmental compartments. There is a big gap regarding the standardized method for the quantification and identification of airborne microplastics (MPs), especially those in the range of 5-100 µm (small microplastics, SMPs) and airborne micro-litter components (MLCs), i.e., plastic additives, natural fibers and non-plastics synthetic fibers. This study aimed to develop and optimize a pre-treatment method (i.e., elutriation, oleoextraction, and purification) to extract SMPs and MLCs simultaneously from urban aerosol samples. The quantification and simultaneous chemical characterization were performed via Micro-FTIR. The method developed was then applied to two samples from different seasons, i.e., summer and late fall - winter. Micro-litter particles followed the Poisson distribution, and the fiducial limit (confidence interval) was calculated accordingly. Non-parametric statistical tests were performed to evaluate significant differences among the samples. The most abundant plastic polymers were polyethylene (HDPE) and polytetrafluoroethylene (PTFE). Among MLCs, flame retardants, UV filters, stabilizers, and rayon were identified. The results of this study will contribute significantly to establishing standardized and accredited methods to quantify and identify airborne SMPs and MLCs.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Polietileno/análise
6.
J Environ Manage ; 324: 116348, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36174466

RESUMO

Highway stormwater (HSW) runoff is a significant pathway for transferring microplastics from land-based sources to the other surrounding environmental compartments. Small microplastics (SMPs, 5-100 µm), additives, plasticizers, natural, and nonplastic synthetic fibers, together with other components of micro-litter (APFs), were assessed in HSW samples via Micro-FTIR; oleo-extraction and purification procedures previously developed were optimized to accomplish this goal. The distribution of SMPs and APFs observed in distinct HSW runoff varied significantly since rainfall events may play a crucial role in the concentration and distribution of these pollutants. The SMPs' abundance varied from 11932 ± 151 to 18966 ± 191 SMPs/L. The dominating polymers were vinyl ester (VE), polyamide 6 (PA6), fluorocarbon, and polyester (PES). The APFs' concentrations ranged from 12825 ± 157 to 96425 ± 430 APFs/L. Most APFs originated from vehicle and tire wear (e.g., Dioctyl adipate or 5-Methyl-1H-benzotriazole). Other sources of these pollutants might be pipes, highway signs, packaging from garbage debris, road marking paints, atmospheric deposition, and other inputs. Assessing SMPs in HSW runoff can help evaluating the potential threat they may represent to receiving water bodies and air compartments. Besides, APFs in HSW runoff may be efficient proxies of macro- and microplastic pollution.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Microplásticos , Plásticos , Plastificantes , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise
7.
Toxics ; 10(7)2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35878288

RESUMO

This study is the first to investigate the ingestion of microplastics (MPs), plasticizers, additives, and particles of micro-litter < 100 µm by larvae of Simuliidae (Diptera) in rivers. Blackflies belong to a small cosmopolitan insect family whose larvae are present alongside river courses, often with a torrential regime, up to their mouths. Specimens of two species of blackfly larvae, Simulium equinum and Simulium ornatum, were collected in two rivers in Central Italy, the Mignone and the Treja. Small microplastics (SMPs, <100 µm), plasticizers, additives, and other micro-litter components, e.g., natural and non-plastic synthetic fibers (APFs) ingested by blackfly larvae were, for the first time, quantified and concurrently identified via MicroFTIR. The pretreatment allowed for simultaneous extraction of the ingested SMPs and APFs. Strong acids or strong oxidizing reagents and the application of temperatures well above the glass transition temperature of polyamide 6 and 6.6 (55−60 °C) were not employed to avoid further denaturation/degradation of polymers and underestimating the quantification. Reagent and procedural blanks did not show any SMPs or APFs. The method's yield was >90%. Differences in the abundances of the SMPs and APFs ingested by the two species under exam were statistically significant. Additives and plasticizers can be specific to a particular polymer; thus, these compounds can be proxies for the presence of plastic polymers in the environment.

8.
Mar Pollut Bull ; 177: 113477, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35277272

RESUMO

One of the aims of this study is the development of a pretreatment method for additives, plasticizers and other components of micro-litter (APFs), and small microplastics (SMPs <100 µm) in the gastrointestinal tract (GIT) of five of the most widely distributed and consumed commercial fish species, Engraulis encrasiculos, Sardina pilchardus, Mullus surmuletus, Solea solea, and Sparus aurata. The second aim was to develop a simultaneous quantification and identification method via Micro-FTIR of APFs and SMPs ingested by these commercial fish species. The distribution of SMPs and APFs is characteristically different for each species investigated. E. encrasiculos and S. pilchardus had a higher weight of SMPs than the other species investigated. Regarding APFs, the highest abundance was observed in E. encrasiculos. This study highlights the importance of studying additives and plasticizers that can be used as efficient proxies of microplastics, as shown by the presence of vulcanizing agents such as Vanax®.


Assuntos
Dourada , Poluentes Químicos da Água , Animais , Monitoramento Ambiental/métodos , Peixes , Trato Gastrointestinal/química , Microplásticos , Plastificantes , Plásticos , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise
9.
Sci Total Environ ; 797: 148937, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34303248

RESUMO

In this study, the abundance and the distribution of small microplastics (<100 µm, SMPs) and of other components of micro-litter (i.e., additives, plasticizers, natural and non-plastic synthetic fibers, APFs) were investigated in sediments and seawater of three different sites of a transitional environment; different anthropogenic impacts and environmental features characterize these three sites. The pretreatment method developed (oleo-extraction and purification procedures) allowed the collection of particles (SMPs and APFs) in a wide range of densities, e.g., from low-density plastics to high-density plastics, avoiding further degradation/denaturation of polymers. An analytical method for quantification and simultaneous identification of SMPs and APFs via Micro-FTIR was developed. Higher abundances of SMPs were observed in sediments compared to the abundance observed in seawater. SMPs were not the major component of the micro-litter. With natural fibers and non-plastic fibers, additives and plasticizers were quantified and identified in sediments and seawater. These latter are employed to obtain specific characteristics of polymers; hence their presence can be a good proxy of these polymers' presence in the environment. Sources and pathways may influence the abundance and distribution of SMPs and APFs. Differences in abundance and distribution of these pollutants in sediments and seawater of the three sites investigated were statistically significant.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Plastificantes , Plásticos , Polímeros , Água do Mar , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise
10.
Environ Int ; 137: 105587, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32097803

RESUMO

Microplastic contamination of the benthic invertebrate fauna in Terra Nova Bay (Ross Sea, Antarctica) was determined. Twelve macrobenthic species, characterized by different feeding strategies, were selected at 3 sampling sites at increasing distance from the Italian Scientific Base (Mario Zucchelli, Camp Icarus, Adelie Cove). The 83% of the analyzed macrobenthic species contained microplastics (0.01-3.29 items mg-1). The size of the particles, measured by Feret diameter, ranged from 33 to 1000 µm with the highest relative abundance between 50 and 100 µm. Filter-feeders and grazers displayed values of microplastic contamination from 3 to 5 times higher than omnivores and predators, leading to the hypothesis that there is no evident bioaccumulation through the food web. The prevalent polymers identified by micro-FTIR were nylon (86%) and polyethylene (5%); other polymers identified in Antarctic benthos were polytetrafluoroethylene, polyoxymethylene, phenolic resin, polypropylene, polystyrene resin and XT polymer.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Regiões Antárticas , Baías , Monitoramento Ambiental , Invertebrados , Microplásticos/farmacocinética
11.
Chemosphere ; 238: 124564, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31472348

RESUMO

Microplastics pose a worldwide risk for the environment. Microplastic fibers, which are released during the household washing of synthetic fabrics, are a substantial percentage of microplastics in rivers and in oceans. A novel quantification and simultaneous identification of fiber polymers via Micro-FTIR (Fourier Transform Infrared Spectroscopy) was developed. Washing simulations with commercially available household products were performed and effluents were filtered either on GF/F filters (0.7 µm) or on Anodisc filter (0.2 µm), to gather even the smallest fibers. Furthermore, a novel purification procedure of effluents was developed. Subsequently, filters were analyzed also with the scanning electronic microscope (SEM) to confirm the width and length of fibers. This novel method is robust and replicable and it allows better quantification of fibers released and identification of fiber polymers with optimal matches (averagely 80%).


Assuntos
Monitoramento Ambiental/métodos , Microplásticos/análise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Poluentes Químicos da Água/análise , Filtração , Produtos Domésticos/análise , Microscopia , Têxteis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...